
Team 5 - Data Collection, Processing, and Visualization for 
Remote Emergency Generator Systems
Team Members: Evan Langlais, Emil Abraham, William Reid, Rania Chowdhury
Sponsor Advisor: William Schneeloch
Sponsored by: Kinsley Power Systems
Faculty Advisor: Dr. Song Han

Project Sponsor Project Motivation

System Overview

Generator Server Frontend Server

Gateway Server Data Ingest Server Backend API Server

Intake - Data enters via Kafka and is 
transformed into meaningful data using Avro

Process - Data processed via Spark running 
an application written in Scala

Storage - Processed data pushed into 
OpenTSDB via a WebSocket for storage and 
future analysis.

Generators are a cornerstone of emergency power infrastructure that ensure critical systems are up and running 
during power failures. Currently, a technician must physically travel to each individual generator to view its health 
and current sensor data, and cannot deduce trends and macroscopic issues as each generator is isolated from 
each other. Our project sets out to rectify both of these issues by enabling remote monitoring of generator health 
and sensor data, and implementing a centralized database of sensor data / fault history for all generators to be 
analyzed and visualized.

Data is queried by Express, a Node.js web 
application. Express queries data from 
OpenTSDB for generator metric data and 
MySQL for user and generator information. 
Through these queries, the frontend server can 
call endpoints in order to appropriately display 
the relevant data on the website. 

The server is also 
responsible for establishing 
an authentication system 
for the website. This allows 
for authorized viewing of 
generator data.

The statistics page 
serves to display the 
most recent generator 
data metrics and 
generator faults and 
statuses.

After discussion with the sponsor, it became clear that our system would be similar to other Big Data / Internet of Things (IOT) system solutions. The source of data 
originates from many independent and distributed servers, in our case connected to a generator controllers, polling and then pushing data into a central ingest server to be 
further processed and used in meaningful services. To ensure an agnostic environment for future production deployment to a cloud provider, our system’s datapath was 
designed to run on Red Hat Enterprise Linux (RHEL) servers. Each component of the datapath has a particular role in the transformation of raw data into meaningful data 
analytics and visualization via the website frontend. Building a system to handle thousands of concurrent generator connections with gigabytes worth of data being 
ingested every day is ultimately what lead to the following system design.

The visualization page 
plots a specified data 
metric for up to five 
generators over a 
chosen time period 
with optional 
downsampling.

The dashboard page 
shows which 
generators a user has 
access to and a quick 
overview of that 
generator’s health and 
information.

The Gateway Server is written in Go, and 
accepts incoming WebSocket connections 
over TLS. It maintains each generator’s 
connection, metadata, and state in a 
centralized MySQL database. Data packets 
received by the Gateway are serialized with 
Avro and sent to Kafka for processing. When 
status code update packets are received, the 
required state change is updated in the 
MySQL database and any necessary 
notifications are sent to technicians. 

The Generator Server is running on a 
Raspberry Pi connected to the Controller's 
Modbus RS-485 port via a USB to serial 
converter.

The server is written in Go. It establishes a 
WebSocket connection to the Gateway Server 
for bi-directional communication. It constantly 
reads data and status registers, aggregates 
them, and periodically sends them to the 
gateway server, which responds with a 
verification packet. If none is received, the 
data is re-sent with the next packet.


